= .
/ . et e T
o { 5

PL/I BULLETIN NO. 3

1) O WL (OpoD ST LT OILL) M) WFuddon £q paroajord og Avw pupoieit SUEL SHOLLON '

March 1967
- D’escription Page
EDITOR'S NOTES {
'CORRESPONDENCE
~ (W. Schoniger, M. S. Schneider) 2

WORKING PAPERS

~ M. S. Schneider: A PL/1 Reformatter 5
“A. E. Chapman: A User's Experience with 7
PL/I
PROGRAMS
. F. W. Schneider: A Permutation Algorithm 18

REFERENCES 19

PL/I Bulletin No. 3 Page 1

The PL/I Bulletin is sponsored by Working Group 4 (WG4) of the
Special Interest Group on Programming Languages (SIGPLAN) of
the Los Angeles Chapter of the Association for Computing Machinery.

I aq Avw jruomen snpy, iADLLON f

The opinions and statements expressed by contributors to this bulletin
do not necessarily reflect those of the sponsor, and the sponsor under
takes no responsibility for any action which might arise from such
statements. Furthermore, publication of programs or algorithms

in this bulletin does not constitute endorsement of their correctness oOT
accuracy. The sponsor does not retain copyright authority on
material published here, except in the case of material produced by
WG4 itself. Permission to reproduce any contribution should be
obtained directly from the authors.

y ot} WO (epoD 'S L1 PNLL) MR Wdkdos Aq pajooioud

Correspondence and contributions should be addressed to:

I”

R. N. Southworth (Editor, PL/I Bulletin)
c/o Logicon, Inc., 205 Avenuel
Redondo Beach, California 90277

PB3.0 EDITOR'S NOTES

!
i

I—

“SUON00]|

PR3.0.1On Contributions

The PL/I Bulletin is intended to be an informal publication for the
interchange of information and opinions relating to PL/I. Correspond-
ence and other contributions from the general readership are solicited.
The frequency of publication has been and will continue to be adjusted
to the rate of input.

PB3.0.2 Some Changes

The "NEWS ITEMS" section of this bulletin will be de-emphasized
because of the excellent reporting of PL/I news in SICPLAN notices.
The "CIRCULATION LIST" section will be dropped because of the
change in the method of circulation of the PL/I Bulletin (see SICPLAN
notices). .

Code). From the Charles Babbage astitute collections. ‘

! NOTICE: This material may be protected by copyright law (Title 17, U.S.

PB3.2 CORRESPONDENCE

Page 2 PL/I BulletinNo. 3~

Sperry Rand AG
Barengasse 29
8001 Zuirich
January 27, 1967

PB3.2.1 ECMA/TC 10 Activities

I am so sorry for the delay in answering your letter dated 9/28/66
to Mr. Cormack.

Please find enclosed a short report on the ECMA/TC 10 activity.

1 hope it properly represents the past work and the ideas of TC 10.
Further included are copies of 6 pages extracted from ECMA docu-
ment ECMA/TC 10/67/2 (title, pages i, ii, 110, 111, 112). I think
those pages summarize the complete document.

The ECMA secretariate will send you the complete document
ECMA/TC 10/67/2 and other ECMA documents that might be of
interest to you. : ’

Sincerely yours,
Dr. W. Schoniger
Chairman, ECMA/TC 10

(Editor's Note: The report mentioned by Dr. Schoniger follows
below. The full text of ECMA/TC 10/67/2 is to be printed in PB4.)

Results and Present Status of Work within TC 10

1)

Concentration on Subsets at Present

In ECMA/TC 10 standardization work is concentrated on subsets
of PL/I at present. There are no fundamental objections against
the full language. However, TC 10 members feel that especially
those parts of the language, that are beyond the D-level are com-
paratively new features and need careful checking and possibly
clarification. Users' and implementors' feedback is necessary
especially for those parts to determine if and how they should be
included into the language.

ight law (Title 17, U.S. Code). From the Charles Babbage Institule collcctions.J

OTICE: This material may be protected by copyri

N

5)

7)

PI1./I Bulletin No. 3 Page 3

Minimum PL/I Subset for Scientific + Commercial Users

ECMA/TC 10 has now completed specifications for a minimum
PL/I subset for scientific + commercial users, a complete
document is available. However, this subset is only supported
by three companies.

PL/I Subset Approximately at IBM D-level

ECMA/TC 10 is at present specifying a PL/I subset approximafely
at the IBM D-level. - This subset is supported by a large
majority of companies, represented in ECMA/TC 10.

Formal Definition of PL/I

TC 10 members are trying to get enough knowledge to decide on
the suitability of formal methods for a rigorous and clear
definition of the full language and of subsets.

Full language

During this year work on the full language will be started again.

Character Set

Standardization effort within ECMA/TC 10 on PL/I will be based
on the 60-character-language as described in the IBM language
specification. The 48-character-language will no longer.be con-
sidered for standardization.

The character set for PL/I should definitely lie in columns 2-5 of
the ECMA 7-bit-code standard.

Logical OR should be represented by. .
Logical NOT should be represented by * .

Only the letters A through Z should be considered alphabetic.

Collating Sequence

The collating sequence should be implementor defined. However,
the collating sequence implied by the ECMA 7-bit-code is
recommended.

J

Babbage Institute collections.

[NOTICE: This material may be protected by copyright law (Titic 17, U.S. Code). From the Charles

P age 4

PL/I Bulletin No. 3 _

PB3.2.2 Comments on PL/I

February 19, 1967

From the experience gained in programming the PL/1 program,
REFORMAT, I would like to suggest the following additions and
changes to the language.

1) DOI=A should be allowed, where A is an array, and I is set to
each successive value of A.

2) UNTIL, as suggested by W. N. Holmes (PB2.3.5) should be added.

3) UNLESS: not restricted to places where the IF statement is
allowed, as implied by Mr. Holmes, but also to be used in:

DO 1I=1 TO K UNLESS (J)

(where J may be an expression or variable) to mean if J is true
then go to the corresponding END statement (i.e., increment 1).

4) RELOCATE should be provided to alter the size of an existing
(allocated) block, while not destroying its contents (except of
course in the case of REALLOCATE-ing to a smaller block).

5) The data attributes on a PROCEDURE or ENTRY statement should
define that PROCEDURE or ENTRY as "RETURNS (data attributes)."

¢) DEFAULT: The DEFAULT statement should be included as a way
of specifying the default attributes within a block, so that if all
(or most) variables within a particular procedure are; €.g., FIXED
BINARY STATIC only, they need not be specifically declared such,
but rather will default to those attributes.

Beyond the above suggestions, 1 found PL/I to be a far more powerful
language than it appears to be at first glance. One case in point, RE-
FORMAT could not have been written easily (more probably not at all)
in FORTRAN, as it involves extensive character- and bit-string

manipulation.

Margaret S. Schneider
System Development Corporation

[NOTICE: This material may be protected by copyright law (Title 17, U.S. Code). From the Charles Babbage Institute collcctions."

PB3.3

PL/I Bulletin No. 3 Page5

WORKING PAPERS

PB3.3.1 A PL/I Reformatter

Margaret S. Schneider

The PL/I programming language allows the programmer an unprec-
edented degree of flexibility in the way in which he presents his program

to the compiler: statements may appear anywhere on a card, may span

~ cards, or a number of statements may appear on one card; comments

may be inserted anywhere there is a blank, and keywords may be
abbreviated. This flexibility facilitates modification and correction
when a program is being written or checked out, however, when the
program is finished, the resultis a hodge-podge of symbols randomly
scattéred across the listing, making it difficult to follow the logic of

the program.

The purpose of the reformatter is to accept any PL/I program and re-
write it in a canonical form similar to that suggested in PL/I bulletin
No. 1. Statements are placed one per line, and indented or outdented
to indicate the structure of the program; labels are moved to the left
margin to make them easy to find; a standard form of punctuation is

used; etc.

General algorithm: Separate program into "tokens," a token being a
special character, a PL/I verb, or an alphanumeric token: part of a

multi-word verb, a comment in its entirety, or a variable.

Determine the extent of each statement (i.e., where it effectively ends,
e.g., after the "THEN" for anIF..... THEN type statement. For each

statement determine if it has a pair (two alphabetic tokens in a row,

’ NOTICE: This material may be protected by copyright faw (Title 17, U.S. Code). From the Charles Babbage]nsgil.ulc c()ilcclions;‘

~ Jage 6 PL/I BulletinNo. 3 . —

ignoring comments), and/or an equal sign, and depending upon the
result of this, find out what type of statement it is: assignment state-
ment, "arbitrary" statement (one not affecting the reformatting of the

rest of the program), or a statement that will affect reformatting, such

as a DO statement, or an END statement.

Print the statement in the reformatted form, (deleting extra blanks) as

determined by previous statements and itself, and return to process

the next statement.

Some points of interest which were encountered and taken into con-
sideration while writing the REFORMAT program: comments may be
anywhere a blank may be, and not affect the validity of the program.
A blank may occur between any two words or symbols, including
between the words of multi-word verbs. The only exception to this is
between two-symbol operators; e.g., *¥/or ¥*% or > =. PL/I has no

reserved words, leading to statements such as:
IF IF = THEN THEN PUT LIST (LIST, PUT)
The program will be run using itself as data.

Sample Input:

PERIOD: IF SUBSTR (PROGRAM, IP, 2) ='.' THEN DO;
CK: IF IP = BGNTOKN THEN IF SUBSTR
(PROGRAM, IP+1,1) > =10r THEN GO TO TOKEND; ELSE DO:DO; CALL
ISTOKEN; ALPHA(T) = '01000'B;
BGNTOKEN = IP + 1;
GO/*HELP*/TO TOKEND; END; ELSE DO;
IF SUBSTR (PROGRAM, BGNTOKEN, 1) > =10" THEN GO TO TOKEND;

ELSE DO; CALL ISTOKEN; BGNTOKN =1IP; GO TO CK; END;; CALL
IMAGE; END; END:END;

|

Code). From the Charles Babbage Institute collections.

PL/I Bulletin No. 3 Page 7

Reformatted Output:

PERIOD: IF SUBSTR (PROGRAM, IP, 2) = '.!

THEN DO;
CK: IF IP = BGNTOKN
THEN IF SUBSTR (PROGRAM, IP + 1, 1) >0
THEN GO TO TOKEND;
ELSE
DO: DO;
CALL ISTOKEN;
ALPHA (T) = 101000'B;
BGNTOKN = IP + 1;
GO /#*HELP*/TO TOKEND;
END;
ELSE DO;
IF SUBSTR (PROGRAM, BGNTOKN,
1) > = 10t
THEN GO TO TOKEND;
ELSE DO;
CALL ISTOKEN;
BGNTOKN = IP;
GO TO CK;
END;
CALL IMAGE;
END;
END: END;

(Editor's Note: The full text of the program, REFORMAT, will be
published in the next PL/I Bulletin.)

PB3.3.2 A User's Experience with PL/I

A. E. Chapman

"PL/I, PL/I, wherefore art thou PL/I?" This lament comes from a
programmer who has suddenly realized that just knowing the PL/I
language is not enough, one also needs to know how it has been im-
plemented.1 This part of it turns out to be almost impossible to find

out except by the user's experimentation with PL/I.Z

, NOTICE: This material may be protected by copyright law (Title 17, U.S.

L1BM 5/360 Model 50
2 Only the British knew and they were keeping it to themselves.

oltecions. |

rom the Charles Babbage Institute collections

] NOTICE: This matcrial may be protected by copyright law (Title 17, U.S. Code). I

Page 8 PL/I Bulletin No. 3 -

While there were many problems associated with the first release of

the PL/I compiler, the second release has turned out to be much

cleaner and, in fact, is at the stage of development where Version 1

should have been when it was released. However, this article has

relatively little to say about the compiler problems, or even about the

1anguage.3 Instead, I will concentrate on the present implementation

of the PL/I and attempt to show why much of the current unhappiness

o . 4,
stems from the implementation, not the language. Any reference

" to PL/I will concern itself with Release 2 only.

Program Structure

PL/I programs are structured in the form of blocks, as in ALGOL,

except that PL/I takes the concept even further since statements

may be blocked (i.e., delimited) by the following:

PROG: PROCEDURE;; BEGIN ; DO;
Statements Statements Statements
END PROG; END; END ;

Ths use of the above, plus such features as dynamic storage allocation,

external and internal procedures, and embedded declarations can have

a considerable effect upon the running time of a PL/I program.

General Structure of a Program

e the only implementation of PL/I is heavily tied to IBM's 05/360

Sinc

with its adherent advantages and disadvantages, a good deal of

3 Except to say

5

that while PL/I is more than adequate for most D.P. applica-

tions, certain fea’éures should be added to this language, such as SORT and

table capabilities.
When we later found out
it was not worth going on. :

Those theorists who insist that since PL/1 is a compromise language it
cannot be good will probably disagree.

how PL/I had been implemented, we almost decided

J

de). From the Charles Babbage Institute collections.

PL/I Bulletin No. 3 Page 9

overhead has to be built into a PL/I program to allow it to function

within this environment.

An executable PL/I program consists of in-line code, calls to OS5,
plus calls to subroutines (library routines) which in fact do most of
the work in a PL/I program. Library routines do such things as type
conversion,6 initialization of variables, comparisons,7 built-in

~ functions, operations, rectif_ication of a variable address and a host

of other operations.

Specifics of a Program

Associated with any PROCEDURE or BEGIN block is a prolog which
performs such functions as allocation of storage and initialization of
variables, rectification of addresses, activation of ON conditions for
the handling of interrupts and the setup of a save area trace for the
linking of procedures. Also associated with a PROCEDURE or BEGIN
block is an epilog which functions as the reverse of a prolog. The
time spent in a prolog can vary anywhere from a microsecond to 500
milliseconds,8 depending upon what needs to be done before execution
of any statements within the block can commence. An epilog similarly
takes as much time as its associated prolog. It can thus be seen that

" the activation of too many PROCEDURE or BEGIN blocks at object-

time can add to the running time of a PL/I program by a great deal.

Last, but by no means least, the object time efficiency is affected by

the indirectness used by the compiler in the setup of a PL/I program.

Neliie o}

l NOTICE: This materiat may be protected by copyright law (Title 17, U.S. Co

~! O~

Binary to float, float to decimal, etc.

If field lengths are unequal.

Model 50 Under OS.

The object-code produced can be both re-entrant and recursive, provided
there is no static storage involved. '

Page 10

PL/I Bulletin No. 3 . —

Each structure, array (and in many cases a variable) will have a
dope vector associated with it which contains information for use by
the program at object-time. In addition to dope vectors, many
variables have DED's (Data Elements Descriptars)10 and skeleton
vectors associated with them. All of the features mentioned above
contain the seeds of object-time inefficiency due to the overhead

necessary to access them.

'As a matter of fact, less than 1/3 of the overall inefficiency of a

program can be attributed to its data organization, the rest being due
to the inefficiency of the object-code and the use of library routines.
For instance, where six instructions would suffice, PL./I has fifteen;
or where an expression or sub-expression could be calculated at
compile-time,“ it is done at object-time. But even this is Ihinutiae
compared to the inefficiency produced by the library routines. This
is because almost all of these routines are interpretive by nature

(and decree). While this makes them fairly easy to‘produce, checkout
and implement, it can readily be seen that run-time efficiency can
easily become a laugh. It is the author's opinion that the incorporation
of most of the library routines' functions into main-~line code,iz plus
the use of static storage as a default would do the most for improving

PL/I's run-time.

My PL/I Experiences

Early in the game I discovered that a program that made extensive

use of internal and/or external PROCEDURES and BEGIN blocks kept

l NOTICE: This materinl may be protected by copyright law (Title 17, U.S. Code). From the Chatles Babbage Institute collections. J

10
11
12

For use mainly by arithmetic and type conversion library routines.
For example - subscripts.

A minimum improvement of execution time of at least 50% is not at all
impossible to contemplate.

PL/I Bulletin No. 3 Page {1

the execution speed of the program so low as to make it virtually
useless. To correct this, all procedures (except the main one) had
to be incorporated into in-line source code, placed at the end of the
main procedure and branched to directly. Returns were made via .a
label Variable,1 3 Additionally, all BEGIN-END's except those used
with ON-conditions were replaced by DO-END's which performed the
same function except that there was no overhead attached to their
14

use. Upon making these changes alone, the program went from a

run-time of 68 minutes to one of 32 minutes.

It was during the testing of the above program that several things;
happened that drove the author literally up a tree. These things have
to do with the implementation and its interface with OS/360 and are
described in detail below.

1) Embedded Declarations

Since data declarations can be embedded within a sequence
of executable statements I did so. It then turned out that

the DECLARE's were, themselves, executable in the sense
that each time the sequence of flow passed through the de-
clare's, storage was alloca.ted.15 Thus, if something is
placed in the variable declared and the declare is then
executed, a further reference to the variable will be mean-
ingless as the contents now could be anything depending upon
what that core location is contained in the skeleton vector
that points to the variable. In fact, if placed within a DO

loop it is possible to keep allocating storage until there is

I NOTICE: This material may be protected by copyright law (Title 17, U.S. Code). From the Charles Babbage Institute collections. l

13

14 The label variable having been set up prior to the branch.

The use of BEGIN's is a concession to ALGOL users and is worthless since
a DO can perform just the way a BEGIN can and is more valuable.

15 . .
Provided the storage class is automatic.

l NOTICE: This material may be protected by copyright law (Title 17, U.S. Code). From the Charles Babbage Institute collections. ‘

Page 12 PL/I Bulletin No. 3

no more core in which case we could get blasted off the
machine and get a core dump and message saying there
is no more core available.

Controlled Storage

Since the use of controlled storage can be quite attractive
in programming I decided to use it to simulate a push-down

stack by means of the following mechanism:

DCL OUTFIELD (¥) CHAR (32) ;

DCL INFIELD (¥) CHAR (32) ;

DCL A STACK CHAR (32) CONTROLLED ;
ALLOCATE A _STACK ;

AO1 ;.
DOI=1 TOINDEXI ;
A STACK =INFIELD (I) ;
ALLOCATE A STACK ;
END ;

BO1: 3
FOE
CO1
DO J =1 TO INDEXI ;
OUTFIELD (J) = A _STACK ;
FREE A STACK ;
END ;
This arrangement worked just fine except that an error
occurred and INDEXI was set to an amount at CO1 greater
than it was at AO1. This happened between labels BO1 and
CO1 with the result that the FREE operation took place 25
times more than the allocate. It might be expected that an

error would occur at this time terminating the program.

Instead, the program went executing merrily away using

" both the good and bad data it now had. Tracking this one

down was an absolute horror, expecially since the trace

' NOTICE: This material may be protected by copyvight law (Title 17, U.S. Code). From the Charles Babbage Institute collections. J

3)

4)

PL/I Bulletin No. 3 Page 13

feature (check) was not working at this time. It turns out
that the ability to FREE a controlled variable more times
than it was allocated is perfectly legal.

Editing and Pictures

It might be expected that the use of pictures in data de-
clearations ala COBOL would be an advantage to the pro-
grammer. However, it turns out that whenever data is
placed within such a variable it is edited in, character by
character, via the interpretive library routines. This can
be horrible if there are many such variables. Thus, the
slogan: '"NO GODDAM PICTURES!, except where absolutely
necessary, of course.

Fixed Decimal

A fixed decimal variable (defined as (5, 2)) was added to
another fixed decimal variable (defined as (5, 2)) and then
printed out. Only the first two places were printed out.

In the above two sentences is containéd three weeks of agony
since it took me that long to figure out what was happening,
the why of it I have never figured out, nor has anyone ever
been able to tell me. It so happens that thrvee blank spaces
are automatically added to the front of all fixed decimal
variables. For example, a variable declared as (5,2) is in
reality (8,2). The result was mass hysteria among pro-
grammers because if you want the variable to be printed as
it was declared, it must be edited by means of pictures,
GET /PUT STRING statement, SUBSTR function, or some

other subterfuge.

’ NOTICE: This malerial may be protected by copyright law (Title 17, U.S. Code). From the Charles Babbage Instilute collections. }

5)

Page 14 PL/I Bulletin No. 3

Interrupts

Since certain types of interrupts can be handled by the pro-
gram they were duly placed in the source code without any
real understanding of what would happen. It turns out that
when any interrupt occurs which the program is not set up
to handle, processing is halted and a dump of core is taken.
This is fine except, for those conditions that are defined,
functioning may not be the way the documentation states.
As an example of this, take the use of the ON CONVERSION
feature. This was used by me to determine if a character
data field was numeric or not. For example, the following:
DCL LBLA LABEL;
DCL NUM FIXED BINARY (6) ;

DCL FIELD CHAR (6) ;
ON CONVERSION BEGIN ;

FLAG=1;
GO TO LLBLA ;
END ;

LBLA = AOO1 ;

NUM = FIELD ;

/* NUMERIC */
; 0

AOO1 :

/% NOT NUMERIC */
< &
3 CO S

The above mechanism works fine except for the case where
FIELD contains zero's and/or one's except the last character
which is B.

The result is that the PL/I library conversion routine

thinks this is a binary bit string. This is not strictly legal

because a binary bit string should be clefined17 as a string

16

A better question might be - 'What does function the way the documentation

17

states, that is if you can understand the documentation'.
PL/1 Specifications, -4.

PL/I Bulletin No. 3 Page 15

- of 0's and/or 1's followed immediately (no spaces) by

two quote marks with a B between them. So much for
geti':ing tricky, there should be some way of easily
determining if a character variable is numeric or alpha-
betic.

6) Built-In Functions

The utility of the built-in functions: LENGTH, INDEX and
SUBSTR, has turned out tc be very valuable, but, being
very interpretive by nature, the time they take to execute
may vary from 3 to 24 milliseconds. It can thus be said
that extensive use of these functions is to be frowned upon.
The way to get around using these functions is to overlay a
character string with a one-dimensional packed character
array (e.g., DCL A CHAR (10); DCL B (10) CHAR (1)
DEFINED A PACKEb;) and then iterate via a DO loop down
the array.

7) Input-Output

The input/output features of PL/I are quite versatile. How-
ever, one pays for this in the time taken to read or write

data. The use of record I/O can speed up operations by 80%
or more over GET/PUT edit, and 60% or more over GET/PUT
edit for release 1.18 If a lot of 1/O is being done any de-
crease in speed becomes important, but compared to its

other problems a lot can be said for PL/I's I/O operation.

Conclusions

Over the past eleven months I have done extensive work in PL/I

’ NOTICE: This material may be protected by copyright law (Title 17, U.S. Code). From the Charles Babbage Institute collections. ;

18

GET/PUT EDIT for release 2 is slower than that for release 1, and it
is also 1500 bytes longer.

Page 16

P1./1I Bulletin No. 3

ranging from coding programs to running timing, storage, and
function tests of PL/I in a variety of modes. In this time I have
found PL/I to be an extremely versatile langua,ge,19 even though a
good deal of its power must be restricted to get a decrease in run~
time. While much of the present implementation must be improved,
the language as it now stands is, in my opinion, a success. What is
complicated to program in COBOL (i.e., took 5086 lines of source

code) was extremely easy in PL/I (i.e., 943 lines of source code).

‘Execution times (both on Mod 50) COBOL E vs. PL/I F - level placed

PL/I 20% faster. It took just as long to convert the program from
7010 COBOL to 360 COBOL as it did to write the PL/I version. I am
now, and will continue to be, pro PL/I (as a language), but unless
the implementation is improved so that certain self imposed restric-
tionszo can be removed, my feeling would be scrap it, I dislike

getting a taste of freedom, but never being able to get there.

l NOTICE: This material may be protected by copyright faw (Title 17, U.S. Code). From the Charles Babbage Institute collections. \

19

After three years of programming in FORTRAN, COBOL or JOVIAL,

PL/I is a blessing, albeit heavily disguised.
See attached appendix for a list of restrictions and suggestions for
speeding a PL/I program.

law (Title 17, U.S. Code). From the Charles Babbage lnstitute collections. ;

‘ NOTICE: This material may be protected by copyright

PL/I Bulletin No. 3

APPENDIX

How to speed up 2 PL/I Program:

1.

[2 BN - VS N AV

11.

Page 17

Everything used in a PL/I program must be declared (for safety if

nothing else).
All storage must be declared STATIC.

All array dimensions must be declared.

Use as few internal and/or external procedures as possible.

All 'subroutine functions' (converted internal/external procedures)

will use label variables.

All subscripting and arithmetic operations will be done by variables

declared as FIXED BINARY.

The following attributes and operations will be used as little as

possible:

a) VARYING
b) BIT
c) CONCATENATION

The following built-in functions will be used as little as possible and

then with discretion:

a) SUBSTR
b) INDEX

The need for these can be drastically reduced by use of the DEFINE

and POSITION (overlay) attributes combined with subscripting.

TYPE conversion should be kept to as few operafions as possible.

Complex IF statements will not be used. For example:

Do not use: Instead, use:
IF EX!1 OR IF EX1

EX2 OR IF EX2

EX3 OR IF EX3

EX4 THEN =~--; IF EX4

for they generate less code and execute faster.

THEN --;
THEN --;
THEN --;
THEN --;

ELSE --;

Comparisons must be done between fields of equal length if at all

possible.

 Page 18 PL/I Bulletin No. 3

PB3.4- PROGRAMS
PB3.4.1 A Permutation Algorithm

F. W. Schneider
DECLARE PERM ENTRY((#,*) FIXED BINARY,(*) FIXED BINARY) SETS (1);
PERM:PROCEDURE(A, V);
/* THIS PROCEDURE HAS TWO ARGUMENTS:
1) AN ARRAY N! BY N WHICH WILL CONTAIN THE PERMUTATIONS;
2) AN N-VECTOR CONTAINING THE SYMBOLS TO BE PERMUTED.
THE PROCEDURE WILL SET THE FIRST ARGUMENT TO CONTA!N THE N!
PERMUTATIONS OF THE SECOND ARGUMENT.

THE ALGORITHM IS TAKEN FROM THE LAST EXAMPLE OF THE ARTICLE
EULER:A GENERALIZATION OF ALGOL, AND ITS FORMAL DEFINITION:
PART 11 NIKLAUS WIRTH AND HELMUT WEBER
(CACM 9 #2 FEBRUARY 13966 PG. 89) x/
DECLARE (A(*,+%), V(%)) FIXED BINARY;
I=1; N=DIM(V,1); -
BEGIN; s
DECLARE Z(N) FIXED BINARY,
PRM ENTRY(FIXED BINARY, (*) FIXED BINARY) SETS(A,Z);
PRM: PROCEDURE(K, Y) RECURS|VE;
DECLARE (X(N), Y(N), K) FIXED B1NARY,
ROT ENTRY(FIXED BINARY, FIXED BINARY) SETS(Z);
ROT: 'PROCEDURE(K, M) RECURSIVE;.
DECLARE (K, M) FIXED BINARY;
IF M>N THEN RETURN;
Z=X; Z(K)=X(M); Z(M)=X(K);
CALL PRM(K+1, Z);
CALL ROT(K,M+1);
END ROT;
X=Y; |
IF K=N THEN DO;
ACL,*)=X; I=1+1;
END;
ELSE CALL ROT (K, K);
END PRM;
CALL PRM(1, V);
END PERM;

, NOTICE: This material may be protected by copyright law (Title 17, U.S. Code). From the Charles Babbage Institule collections.]

l NOTICE: This material may be protected by copyright law (Title 17, U.S. Code). From the Charles Babbage Instilute collections.]

PL/I Bulletin No. 3 Page 19

REFERENCES

PB3.8.1Review: Gerald M. Weinberg, PL/I Programming Primer, McGraw

Hill Book Company, New York, 1966, 278 pages, $5.95.

The general organization and flow of this text is quite good particularly
in that the elementary ideas and concepts are used to motivate the
discussion of the more complex items. The only apparent weakness of
presentation is the approach of suggesting to the student the structure
of the language and leaving him to assume the rest. This may lead

the student to incorrect ideas of PL/I. Although this approach may

~be an efficient method of teaching, it demands the presence of an

experienced and interested instructor. The carefully constructed
exercises serve to clarify and solidify the concepts presented. The
presence of these exercises mollify to some extent the misgivings
this reviewer has about the precision of exposition.

R. C. Wick

PB3.8.2Review: Eric A. Weiss, The PL/I Converter, McGraw Hill Book

Company, 1966, 116 pages, Probable Price $3.95.

This textbook should prove valuable to the programmer who needs a
working knowledge of PL/I in a short period of time. As the author
states, however, a knowledge of FORTRAN is a necessary pre-
requisite to the use of this text.

The presentation is quite clear and highlights the similarities between
FORTRAN and PL/I. It also gives the reader a starting point for use
of the full-power of PL/I.

There are some items missing which might have been valuable had
they been included. Chief among the missing items are problems or

exercises, a concise summary of FORTRAN versus PL/I notions,
and the mention of efficiency considerations.

R. C. Wick

